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It is suggested that if space-time is quantized at small distances, then even at 
the classical level particle motion in space is complicated and described by a 
nonlinear equation. In the quantum space the Lagrangian function or energy of 
the particle consists of two parts: the usual kinetic terms, and a rotation term 
determined by the square of the inner angular momentum--a torsion torque 
caused by the quantum nature of space. Rotational energy and rotational motion 
of the particle disappear in the limit 1 -~ O, where I is the value of the fundamental 
length. In the free particle case, in addition to the rectilinear motion, the particle 
undergoes a rotation given by the inner angular momentum. Different possible 
types of particle motion are discussed. Thus, the scheme may shed light on the 
appearance of rotating or twisting, stochastic, and turbulent types of motion in 
classical physics and, perhaps, on the notion of spin in quantum physics within 
the framework of the quantum character of space-time at small distances. 

1. I N T R O D U C T I O N  

In  previous  papers (Namsrai ,  1985b; D ineykha n  and  Namsrai ,  1985) 
we have in t roduced  q u a n t u m  space-time and  considered some of  its interest- 
ing consequences .  Our  method  of in t roduc ing  q u a n t u m  space-time may be 

regarded as a local general  coordinate  t ransformat ion:  

x " ~ 2 "  = x "  + I rU(x)  (1) 

where F'~(x) are arbi trary noncommuta t ive  funct ions  of the points  x ~, and  
I represents the value of the fundamen ta l  length. 

The at t ract ion of the approach based on the hypothesis  of q u a n t u m  
space-t ime (1) is that it gives rise to the appearance  of  space-time tors ion 
and  to the existence of  magnet ic  monopoles .  The latter two facts may be 
unders tood  as follows; whole space-time on a large scale con t inued  from 
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the microscale and obtained by an averaging procedure in which its quantum 
character appears differs from the usual space-time structure, where there 
is no place for magnetic monopoles described by some regular potential 
A(x), since divrot A--0 in it. In contrast, as we have shown (Dineykhan 
and Namsrai, 1985), in space-time with torsion, divrot A # 0 for a regular 
magnetic monopole potential, say A = (o-/i)g(1/r),  where g is the value of 
magnetic charge. 

We assume that this structural difference of whole space-time on a 
large scale continued from the microscale must have an effect on particle 
behavior, even at the classical level. In this paper, we consider this problem 
and study particle dynamics for the nonrelativistic case. It turns out that 
in our scheme the Lagrangian function of a classical free particle is deter- 
mined by the usual kinetic part and an additional term connected with the 
rotational degree of freedom corresponding to an inner angular momentum 
(or sector velocity vs = �89 v]) caused by the quantum structure of space. 
Due to the latter term, the dynamics of the particle is changed and is 
determined by a nonlinear differential equation. In the simple case of 
two-dimensional space and free motion, the derived equation of motion is 
integrated completely. The initial value problem of this equation is investi- 
gated. Depending on initial conditions, a particle's trajectory is complicated 
and the particle makes a spiral-like motion along the direction of the classical 
rectilinear trajectory. 

However, it is generally difficult to solve an equation of motion in 
quantum space by analytic methods, and numerical integration is needed. 
The resulting particle trajectory is very tortuous and, it seems to behave 
like a strange attractor, at least in the domain determined by the parameter 
I. We know that the strange attractor is the direct image of"fini te" turbulence 
characterized by a continuous spectrum over time and it is also the mathe- 
matical image of stochastic auto-oscillation. So, it is hoped that our approach 
may be useful to understand the origin of twisting, stochastic, and turbulent 
processes in physics. However, in order to shed light on this problem, 
further careful study is needed. 

In Section 2 we obtain the Lagrangian function for free particles in 
quantum space and the Euler-Lagrange equation by using the action prin- 
ciple for the particle trajectory in large-scale, nonquantum space. The 
concrete form of the motion equation is obtained in Section 3. Sections 4 
and 5 are devoted to the study of the Cauchy problem for the obtained 
equation of motion in two-dimensional space. Here integration of the motion 
equation is carried out explicitly and some interesting possible types of 
particle motion due to quantum space are also considered. In Section 6 we 
discuss the results in order to generalize the given scheme to the relativistic 
and quantum mechanical cases. 
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2. THE LAGRANGIAN FUNCTION AND THE ACTION 
PRINCIPLE FOR A NONRELATIVISTIC PARTICLE IN 
QUANTUM SPACE 

687 

In the nonrelativistic case, we suggest that the quantum character of 
space-time is manifested only through spatial variables; i.e., the coordinates 
of quantum space at small distances consist of  two parts [like (1)] 

x i ~  i= xi+ IFi(x), i = 1, 2,3 (2) 

and time is an ordinary continuous c-number variable here. 
Further, we assume that all physical quantities characterizing a par- 

ticle's state depend on quantum variables ~,  :~i, and t; in particular, the 
Lagrangian function of  the free particle is constructed by the corresponding 
principle as in classical mechanics, 

~ (  ~,  ~') =- 5~(,2') = m( ~')2 / 2 (3) 

where ~ = d~i/dt is a velocity-like vector in quantum space, and m is the 
mass of the panicle. It should be noted that real, observable panicle motion 
over time t takes place in the nonquantum space x ~ on a large scale continued 
from the microscale where its quantum property is manifested. Thus, in 
order to go over to a large scale we must carry out some averaging procedure 
over the microscale [for details, see Namsrai (1985a,b)]. In the concrete 
case where the functions F~(x) in (2) are given in matrix form, the averaging 
procedure is reduced to taking traces of matrices; for example, if Fi(x) - cr ~ 
(o "~ are the Pauli matrices) 

(~i)Df~__ ( l / d )  Tr(5 ~) = x '  (4) 

where the parameter d arises from the normalization condition; in given 
case, d = 2, since o -i are two column matrices. 

Now choose the matrix form 

F'(x)=r (5) 

in (2) [where e~(x) are the tetrad fields (a, i = 1, 2, 3)] and study expression 
(3) in the whole space at large distances. For this, first we define the 
generalized velocity of  the panicle by the formula 

., , deia(x) dx j 
d~t '=dx'+l~ dx ~ dt (6) dt 

in accordance with (2) and (5). To calculate the Lagrangian (3) over the 
large scale, expression (6) should be squared and averaged. As a result, we 
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have 

~(xi ,  2~) ( ~ ( ~ , ~ ) ) = d T r ( ~ ( ~ ,  ' x, 1 = x ) = ~ Tr(:T(~,  4 '))  

m(2~)~ + ml~ de~ de~ 2j2k (7) 
- 2 2 d x J d x  k 

As in the case of classical mechanics, with the Lagrangian function (7) 
we can formulate the law of motion of mechanical systems by using the 
action principle (or Hamilton's principle) (see, for example, Landau and 
Lifshitz, 1965). 

At times t = tl and t = t2 let the mechanical system (in the given case, 
a mechanical material point) occupy definite positions characterized by two 
sets of coordinate values x (13 and x (2). Then between them the system moves 
so that the action integral 

I' S = dt.~W~(x i, Yc i) 
tl 

takes the smallest possible quantity, where ~ ( x  ~, 2~) is given by formula 
(7). As in the usual classical mechanical case, for our scheme the action 
principle tells us that 

6 S = 6  d t~(x i ,~c i )=O 
tl 

and carrying out the variation, we obtain the Euler-Lagrange equation of 
a nonrelativistic particle, 

d o ~  o ~  
dt02  ~ ox~=O, i = 1 , 2 , 3  (8) 

3. EQUATION OF MOTION FOR A rixEE PARTICLE IN 
QUANTUM SPACE 

Now our aim is to obtain an equation of motion of a free nonrelativistic 
particle from the Euler-Lagrange equation (8) with the function (7). For 
this, a concrete form of the tetrad field e~(x) should be defined. As in a 
previous case (Dineykhan and Namsrai, 1985), we choose a spherical frame 
of reference as the tetrad coordinate system and a Cartesian frame of 
reference for the world coordinate system. Then, in the nonrelativistic case 

i = e i ( x ( t ) )  has the form the tetrad field ea 

, = a ~ , / a x  ~ . a x a /a~ ,  ea ei = 
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where 

d~ ~ = dr, d (  2 = r dO, d ~  3 = p dq~ 

dx 1 = dx, dx  2 = dy, dx  3 = dz  

and r = ( x 2 + y 2 +  Z2) 1/2, p = ( x 2 + y 2 )  1/z. One can easily see that the field e~ 
is given by 

/ x / r  y / r  z / r  

e T = l z x / r p  z y / r p  - / r ]  

\ - y /p  ~/p o / 
(9) 

Thus, 

where 

M 2 2 2 = M ~ + M y + M 2 z ,  M z = x p y - y p ~  

My = zp~ - Xpz, M~ = Y P z -  zPr, p = my  

my 2 12M 2 ,2 2 * 12 l Z IVI z 
s  T +  Rt = 2 + ?'4---m "+ p 4 r 2 m  (11) 

In this case, the square of the generalized velocity 

takes the form 

12 
(:~2) = ~2 +__s [ (~y  - y ~ ) :  + (y~ - zy ) :  + ( z~  - x~) ~] 

r 

+ r- ~ ( z~  - x i )  2 + ( y i  - z C y  + - ~  (xr  - y~)~ 
P 

�9 12 

P 

Therefore the averaged Lagrangian function (7) acquires the following form: 

ml 2 ~ = m  ( 2 2 + ) ) 2 + i 2 )  + [ ( x f i - - y i ) 2 + ( y i - - 2 f i )  2 
2 r 4 

ml 2 z 2 �9 . 
+ (z2 - xJ) 2] + p4 -r-/(xy - y 2 ) 2  (10) 

The last two terms may be rewritten in the form 

Rt = M2 +-- -~  M~ 
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where the vectors v and M (Mz) are particle velocity and angular momentum 
(its third component).  We see that in our case the Lagrangian function of 
the free particle takes two parts: the usual kinetic one T and an additional 
rotation term Rt due to the quantum nature of space at small distances. On 
the other hand, the function (11) does not depend on time explicitly and 
therefore the energy of the particle 

E =Yc i 0___~_~= T+Rt  
Oyc ~ 

is conserved. 
It is clear that because of the last two terms in (11), the equation of 

motion for a free particle is complicated in our case and takes the form 
P ~ 2 e k  ~ e  k -i ~ k 

+ o 

LOx Ox Ox J Ox 

where the tetrad field ek(x) is given by (9) (i, n, m, k, a = 1, 2, 3). This 
equation of motion is obtained from the Euler-Lagrange equation (8) and 
we write it in components: 

2rn12 [y(Siy_ fix ) +---~-) rn~i +- -~ -  (1 r2z2\ + z( S&- s ] 

2mF YX)f[x(xy-yx)+2(zzt [z2 2zZr2\ +--~- (-~y- - r ~ ) Y ] t ~ - ~ + - - ~ )  

G x ~ J 

�9 4m12 {zS[x(r i) - 2r 2] + (xx + yr - z2) - y(2y - )~x)]} = 0 
+ r----g- 

�9 . 2m12 r2z2\ fy2)]  
m y - - - - ~ - - [ x ( S i y - f i x ) ( l + - - ~ - ) - z ( f i z -  

J 

+--~(2y-2ml2 ~x){[y(2y-29x)+2x(z~-r ' f ) ] t - -~+--~- -  2z2r2\ 

2z [ . 2zr2\'l 4rnl 2 
- 7  t xz - f - y )  J + ~  {z~[yr .*-  fir 2] 
+ (x2 + yfi){z(y~ - zy,) - x(fix - 2y)} = 0 

2ml 2 2ml 2 z 
r n ~ - - - ~ - [ x ( J & - ~ x ) + y ( f i z - f y ) ]  r4 p2(3cy--yx) 2 

4ml 2 
+-7 - -  {(x~+yr ~-- ~r 21 -- z~Zo 2} = 0 (13) 
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We see that these equations of motion are too complex to be solved by 
analytic methods and require numerical investigation. However, there is a 
concrete case for which the equation of motion in quantum space can be 
integrated completely. That is the situation when the particle motion along 
one of  the directions of  the coordinate system is rectilinear and becomes 
complicated along the other two directions due to the quantum structure 
of space, i.e., it is equivalent to the two-dimensional case. To prove this, 
we choose the cylindrical frame of reference as the tetrad coordinate system. 
In this case, instead of (9), we have 

By using this tetrad field, we can easily calculate the Lagrangian (11) and 
equation of  motion (13): 

= my2/2 + 12M2/p4m 

and 

m~ = 0 

m Y + 2 m l 2 y ( 5 @ - f x ) / p 4 - 4 m l 2 y ( Y c y - ~ x ) ( x 2 + y ~ ) / p 6 = O  (14) 

rn~ - 2 ml2 x( ~y - f x  ) / p4 + 4 ml2 x(  xf~ - ~x ) ( x~ + y~ ) / p 6 = 0 

From these equations, we see that the particle moves in a rectilinear way 
along the z axis, while its motion along x and y axes is complicated and 
twisted in accordance with (14). We now study a particle trajectory deter- 
mined by equations (14). 

4. INTEGRATION OF THE EQUATION OF MOTION IN THE 
TWO-DIMENSIONAL CASE 

It is convenient to study the equations of motion (14) in polar coordin- 
ates (9, P), in which the Lagrangian function has the simple form 

= �89 p2•2 + ~2) + m12~2 (15) 

This function does not contain the coordinate ~ explicitly. Any general- 
ized coordinate q~ not entering explicitly into the Lagrangian function is 
called cyclic. Due to the Euler-Lagrange equation for such coordinates, we 
have 

d a ~  a ~  
= o  

dt OdJi Oqi 
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i.e., the corresponding generalized momentum p~ = 0~/&)i is the integral of 
motion. This situation leads to an essential simplification of the integration 
problem of the equation of motion in the presence of cyclic coordinates. 

In the given case, the generalized momentum is 

p~ = (mrZ + 2m12)(o 

The first term coincides with the angular momentum Mz = m ( x ) - y ~ ) =  
mr2(o. Thus, in our scheme the general angular momentum of the type 

M = M~ + M~ = (mrZ+ 2m/2)~b = const (16) 

is conserved. 
The equation of motion obtained by using the Lagrangian function 

(15) takes the following form; 

rn~ = 0 

m/5 - m(~ 2p = 0 (17) 

m (p2 + 2/2)~ + 2mplS(O = 0 

From the second equation in (17) we have 

2p/~ 
p2+2/2 

o r  

O ( l n  ~b) = O [in(p2 +2/2) ] 

Direct integration of the last equation gives 

= C1/(p2+212) (lg) 

where the integration constant C1 is determined by the initial conditions 

p(t)l,=o=Po---al,  ~o(t)l,=o = 0, ~b],=o= w o (19) 

From which C1 = (a2+ 2)OJo/2 and expression (18) acquires the form 

= (a2+2)o~olZ/(p2+212) (20) 

It should be noted that in the usual case, when l = 0, we obtain the rectilinear 
trajectory given by a ray q~ = ~Oo=const and p ( t ) = p o + V o t  along which 
classical particles move. Here the parameters po and Vo are given by the 
initial conditions (19) and 

a__s ,=o 
ot = Vo (21) 
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Further, substituting expression (20) into the first equation in (17), we 
get 

/~ _ P (a 2 + 2)2~Oo214/(p2 + 212)2 = 0 

To integrate this equation, put p(p) =/5 and write the new equation for p(p) 

p(p) Op(s)/Op = p(a2 + 2)2w~14/(p2 + 212) 2 

Simple integration of this gives 

tJ 2 = - (a2  + 2 )zw~14/ (p2 + 212) + C2 (22) 

where the integration constant 

C2 = v~/2+ (a2 + 2)w~12/2 (23) 

arises from the initial conditions (19) and (21). After separating integration 
variables, equation (22) with (23) may be rewritten in the form 

ao 
+ [v2+ (a2+2)w~12 - (a2+2)2o~zt4/(p:+212)]l/2 = dt (24) 

We notice that the plus and minus signs in (24) are not important and we 
choose a plus sign and integrate this equation. For this, we put 

p = 21/21 ctg x, dp = -21/21 sin -2 x dx, x = arcctg(p/121/2) 

As a result of this change of variables and integration, we have 

21/21 ( sin -2 x 
[V2+(a2+ 2)tO2o1211/2 J dX ( l _k2s in2  x ) l / 2 - t + C  3 (25) 

where 

k = (a 2 + 2)Wo12-1/2[ v 2 + (a 2 + 2)oo212]- 1/2 (26) 

It is easily verified that the integral (25) is reduced to normal elliptic integrals 
of the first kind 

fo F(q~, k) = dx (1 - k 2 sin 2 x) -~/2 

and second kind 

E(q~, k) = dx ( 1  - -  k 2 sin 2 X) 1/2 

Thus, the integral (25) results in 

2~/21 [ P { k2212 ~1/2 

/ {p2- ' /2  ) F [  . p2 -'/2 ) ]  +  arcctgt---V-,k -  aroctg---V-,  = ,+C3 (27) 
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where the integration constant may be calculated by using (19), 
21/21 

C3 - v~+ (a2+ 2)~Oo21 {a21/2[1 - 2k2(a2+ 2)-1/2] 

+ E(arcctg(a2-1/2), k ) -  F(arcctg(a2-1/2), k)} 

Furthermore, rewriting (20) in the form 

dq~ = OJo(p~+ 212) dt/(p2+212) 

substituting dt from (24) with a plus sign, and integrating, we get 

q~ = 2~/21k J dp (p2 + 212)-a/2(p2 + 212-212k2)-~/2 + ~o 

where the parameter k is given by (26). Making use of the change of the 
integration variable 

p = 21/21 tg x, dp = 21/21 cos -2 x dx, x = arcctg(p2-~/2/l) 

and integrating the resulting integral, we have finally 

~o = kF(arcsin{ p[ p2 + 212(1 _ k2)]-1/2}, k) + ~o (28) 

Formulas (27) and (28) solve in a general form the given problem. The 
second determines the connection between p and q~, i.e., the equation of 
the trajectory. Formula (27) defines, in nonexplicit form, the distance p of 
the moving point from the center as a function of time. Notice that the 
angle ~p is always changed over time in a monotonic way--from (16) it is 
seen that ~b does not change sign. 

5. THE TYPE OF PARTICLE MOTION IN QUANTUM SPACE 

As in Newtonian mechanics, the particle trajectory given by (28) takes 
different forms depending on the initial conditions (19) and (21), i.e., on 
the parameter k in (26). We distinguish several possibilities of interest. 
From (28) it is easily seen that the connection between the quantities ~ and 
p has a definite physical meaning if p[p2+212(1-k2)]-1/2<-1. This 
inequality imposes on the parameter k the restriction k<_ 1. Thus, the 
physical conditions of the problem give 0 -< k -< 1. 

1. First we consider the case when k = 0 .  Before discussion of this 
limit, we make some comments concerning the value too. We assume that 
to o depends on l, and there may be some link between them. In other words, 
the condition l = 0 gives rise to too = 0. In contrast, if OJo # 0 even at l = 0, 
i.e., for the usual classical case, then from (18) and the initial condition 
P( t)t=o = Po it follows that 

(P~+ 212)t001 = (P~~ 
~-- P 2+212 /=o \ P /  
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and this in turn involves a complication of the particle's trajectory analogous 
to what was obtained above. 

Such a situation is completely ruled out by classical mechanical prin- 
ciples. We present here a simple connection between Wo and h 

tO o = l/9o/ A 2 or Wo = 12/90/A3 (29) 

where a is some typical length, which may be identified with the dimension 
of  an atom, a = a = 10 -s cm, and the Planck length, A = lvl = ( h G / c 3 )  1/2 = 
10 -33 cm, in classical and quantum physics, respectively. In the last case 
the parameter 1 is determined by the unit of  the Planck length, l =  nlvl, 
n = 1, 2, 3 , . . . .  

Thus, by definition (26) and assumption (29), the equality k = 0  is 
achieved at l = 0 even for Por  0. Notice that a = Po/ l  in (26) in accordance 
with initial condition (19). In the case k = 0, from (28) it immediately follows 
that ~ = const = Po- At the same time, equation (27) takes the form 

p(t )  = po+/9or (30) 

since E(~,  0) = F( r  0) = r and 

21/21 p ( t )  , - , o -  p ( t )  
[v2+(a2+2)~o212] I/2 21/21 Vo 

21'21 [ (1 2ee. 1,2 
C31 =l)m [/9;+ (a2+2)o9~1211/2 L2,/21 \ p~+212 ] l ~O 

[ . O--1/2 

+ E /a rcc tg  t'~ I , k ) -  F ( a r cc tg  P~ 

PO 

/90 

So, we see that the case k = 0 is just the classical situation where a particle 
moves along a rectilinear trajectory given by a ray ~ = ~o0 (Figure la). 

2. For the case k << 1 in order to expose the general pattern of  particle 
trajectory one can use approximate integration of the motion equation (17). 
Instead of  (27) and (28), we have the following approximate equations: 

2'/2k ( 21/21(P-P~ 
t wol(2+a2 ) p-po+lk22 -1/2 arcctg 2 - ~ p o  ] (31) 

and 

o r  

~o = k arcctg(p2-1/2/  I) + ~oo 

p(r = 21/21 tg[(r - r (32) 
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s / 

.~..~ / 
b} *'--~*--'~-~2 b') 

~0-~ ~0-1 

c) ~ ,x = g8~ 

t 

/ o~ = 89 .99  ~ 
/ 

d 3  . . . .  ~Lp  
d 

e) ao e') 

/ 
/9 

j 
/ 

/ 

J 

Z ~  

Fig. 1. Different types of  particle motion, depending on initial conditions in quan tum space. 
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Thus, we see that in the limit k<< 1 the type of  particle motion differs slightly 
from rectilinear, as in the classical mechanical case. 

3. When value of k is increased, the deviation of  the particle trajectory 
from rectilinear becomes more appreciable and it begins to whirl. For 
example, Figures l b - l d  show the particle trajectory for a =30, 88, and 
89.99 ~ where k = sin a. We see that for a = 30, 88, and 89.99 the maximum 
value of  the angle ~ is 48, 271, and - 5 4 0  ~ respectively, which in turn 
correspond to one-quarter, three-quarters, and more than one full turn, 
approximately. 

4. From the physical point of view, a very interesting case is the limit 
k = 1 or a = 90 ~ In this limiting case, the number of twisted loops (or orbits) 
becomes infinite (Figure le) and the particle is subject to rotational motion 
at all times. Moreover, the type of rotational motion does not depend on 
the value of  p, i.e., for any distance p from center, the particle moves along 
a spiral-like trajectory. However, spiral-like behavior of  the particle takes 
place in the domain characterized by the parameter I of the theory. In other 
words, the amplitude l of  this twisted trajectory determines the maximum 
deviation from a rectilinear trajectory. 

Finally, to present the general pattern of the particle motion over time, 
we illustrate on the right-hand side of Figure 1 the possible types of particle 
trajectory corresponding to the left side of  Figure 1. 

6. DISCUSSION OF THE RESULTS 

Thus, as shown above, in quantum space the Lagrangian function or 
energy of  the particle is determined by two terms E = T +  RI, where 

T =  my2~2, RI = 12M2/r4+ (12M2/p4)(z/r)2 

In spherical coordinates these take the form 

T = my2~2 = (m/2)(~2 + r202+ r 2 sin 2 0 ~b 2) 

R, = m12(02+ ~b 2) 

or in the two-dimensional case (in polar coordinates) 

T =  (m/2)(lj2+p2(o2), RI 2)= ml2~ 2 

We call R~ and R~ 2~ the torsion torque of  the particle, which appear due to 
the quantum nature of space at small distances. In the presence of torsion 
torque the particle's trajectory is twisted and the particle moves along 
spiral-like lines. 

Our hope is that if the quantum nature of  space does indeed exist at 
small distances, then its discovery may be made by the study of a particle's 
trajectory. In terms of a suitable choice of initial conditions, one can obtain 
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the case of k = 1 and at which the particle undergoes rotational motion at 
all times. It should be noted that it is quite possible to observe the physical 
effects caused by this twisting motion of the particle, especially for the 
motion of  a charged relativistic particle in an external electromagnetic field. 
We suggest that the influence of the quantum structure of space-time on 
the particle behavior is crucial in the relativistic case. This problem requires 
separate investigation and is the subject of our future work. 

Due to the quantum structure of space the particle trajectory deviates 
from rectilinear at the classical level; one can introduce the fundamental 
assumption that in quantum space the microparticle's position is not definite 
and the particle cannot hit a definite place in space (for the generalized 
complex case different from that considered above). It only occupies, at 
least, some domain characterized by the parameter A or / .  We now find the 
amplitude of  this deviation from the point the particle would arrive at 
exactly if space possessed a nonquantum character. Let the particle move 
with constant velocity Vo along the z axis. If  space is nonquantum, then 
after the time to = Zo/Vo the particle hits the target (slot) at the point z = Zo 
exactly (Figure 2a) Here there is no deviation along the x and y axes. 
However, in accordance with the assumption that space possesses quantum 
structure, the particle deviates from the initial position and traces a circle 
of radius p determined by equation (27), where one should put t = to and 
Vo = 0, since we originally suggested that there was no motion along the x 
and y axes. In this sense, the deviation is a pure quantum space effect (see 
Figure 2b). 

The amplitude of the deviation in which we are interested is given by 
(27), in which we put t = to, Vo = 0, and p >> 1, since in the classical mechanical 
case, the influence due to quantum space may be observable if the deviation 
is much larger than the value of / .  

j Jl 1 

Z 

b) 

Z 

Fig. 2. Illustration of particle position according to the assumption of particle motion in (a) 
nonquantum or (b) quantum space. 
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It should be noted that from high-energy experiments it follows that 
l ~  10 -16 cm (see, for example,  Namsrai,  1985a,b). Thus, assuming p >> I and 
Po = al = 0 in (27), we have 

f _0--1/2 ] 
21/21 [ ~ _ _ _ + E ( O ,  2 - , / 2 ) _ F ( 0 , 2 - 1 / 2 )  P2 -1/2 

t -21 /Zwo  I ~" wol 

and 

p( to) = 21/2O0otoi 

Let an idealized classical object, a small bullet with initial velocity Vo = 
1000 m / s e c =  105 cm/sec,  move along the z axis and hit the target after 
to = 100 sec. Now, the following question arises; How far does its rectilinear 
trajectory deviate after to = 100 sec? According to (29), we get 

Wo = Ivo/ A 2= 105/sec = 0.1 MHz 

and therefore 

p(to) = 14 • 10 -9 cm 

Thus, this value is completely negligible from the classical experimental 
point of  view. 

In conclusion, we note that in the microworld where physical processes 
take place at small distances an effect analogous to that discussed above 
should play an important role and due to torsion torque the trajectory of 
microparticles should become very tortuous. Moreover, it is quite possible 
that the essence of an observable quantum process may be understood as 
Brownian-type stochastic motion taking place in quantum space-time at 
small distances. Thus, this may open the door  for a stochastic foundation 
of quantum mechanics [see, for example, Prugovecki (1984) and Namsrai  
(1985a)], as initiated by A. Einstein and L. de Broglie, seeking to describe 
quantum processes by means of subquantum deterministic motions. 
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